3.119 \(\int \frac{A+B \cos (c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=126 \[ \frac{(3 A+5 B) \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{a \cos (c+d x)+a}}\right )}{16 \sqrt{2} a^{5/2} d}+\frac{(3 A+5 B) \sin (c+d x)}{16 a d (a \cos (c+d x)+a)^{3/2}}+\frac{(A-B) \sin (c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}} \]

[Out]

((3*A + 5*B)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*d) + ((A
- B)*Sin[c + d*x])/(4*d*(a + a*Cos[c + d*x])^(5/2)) + ((3*A + 5*B)*Sin[c + d*x])/(16*a*d*(a + a*Cos[c + d*x])^
(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.10286, antiderivative size = 126, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.16, Rules used = {2750, 2650, 2649, 206} \[ \frac{(3 A+5 B) \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{a \cos (c+d x)+a}}\right )}{16 \sqrt{2} a^{5/2} d}+\frac{(3 A+5 B) \sin (c+d x)}{16 a d (a \cos (c+d x)+a)^{3/2}}+\frac{(A-B) \sin (c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Cos[c + d*x])/(a + a*Cos[c + d*x])^(5/2),x]

[Out]

((3*A + 5*B)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*d) + ((A
- B)*Sin[c + d*x])/(4*d*(a + a*Cos[c + d*x])^(5/2)) + ((3*A + 5*B)*Sin[c + d*x])/(16*a*d*(a + a*Cos[c + d*x])^
(3/2))

Rule 2750

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((b
*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m)/(a*f*(2*m + 1)), x] + Dist[(a*d*m + b*c*(m + 1))/(a*b*(2*m + 1)
), Int[(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 -
b^2, 0] && LtQ[m, -2^(-1)]

Rule 2650

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Cos[c + d*x]*(a + b*Sin[c + d*x])^n)/(a*
d*(2*n + 1)), x] + Dist[(n + 1)/(a*(2*n + 1)), Int[(a + b*Sin[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d},
 x] && EqQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{A+B \cos (c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx &=\frac{(A-B) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}+\frac{(3 A+5 B) \int \frac{1}{(a+a \cos (c+d x))^{3/2}} \, dx}{8 a}\\ &=\frac{(A-B) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}+\frac{(3 A+5 B) \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}+\frac{(3 A+5 B) \int \frac{1}{\sqrt{a+a \cos (c+d x)}} \, dx}{32 a^2}\\ &=\frac{(A-B) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}+\frac{(3 A+5 B) \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}-\frac{(3 A+5 B) \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{16 a^2 d}\\ &=\frac{(3 A+5 B) \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{a+a \cos (c+d x)}}\right )}{16 \sqrt{2} a^{5/2} d}+\frac{(A-B) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}+\frac{(3 A+5 B) \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.454785, size = 80, normalized size = 0.63 \[ \frac{\sin (c+d x) ((3 A+5 B) \cos (c+d x)+7 A+B)+4 (3 A+5 B) \cos ^5\left (\frac{1}{2} (c+d x)\right ) \tanh ^{-1}\left (\sin \left (\frac{1}{2} (c+d x)\right )\right )}{16 d (a (\cos (c+d x)+1))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Cos[c + d*x])/(a + a*Cos[c + d*x])^(5/2),x]

[Out]

(4*(3*A + 5*B)*ArcTanh[Sin[(c + d*x)/2]]*Cos[(c + d*x)/2]^5 + (7*A + B + (3*A + 5*B)*Cos[c + d*x])*Sin[c + d*x
])/(16*d*(a*(1 + Cos[c + d*x]))^(5/2))

________________________________________________________________________________________

Maple [B]  time = 2.23, size = 292, normalized size = 2.3 \begin{align*}{\frac{1}{32\,d}\sqrt{a \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( 3\,A\ln \left ( 2\,{\frac{2\,\sqrt{a}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}+2\,a}{\cos \left ( 1/2\,dx+c/2 \right ) }} \right ) \sqrt{2} \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}a+5\,B\ln \left ( 2\,{\frac{2\,\sqrt{a}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}+2\,a}{\cos \left ( 1/2\,dx+c/2 \right ) }} \right ) \sqrt{2} \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}a+3\,A\sqrt{a}\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}} \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+5\,B\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{a} \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+2\,A\sqrt{a}\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}-2\,B\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{a} \right ) \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-3}{a}^{-{\frac{7}{2}}} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{ \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c))/(a+cos(d*x+c)*a)^(5/2),x)

[Out]

1/32/cos(1/2*d*x+1/2*c)^3*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(3*A*ln(2*(2*a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+2
*a)/cos(1/2*d*x+1/2*c))*2^(1/2)*cos(1/2*d*x+1/2*c)^4*a+5*B*ln(2*(2*a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+2*a)
/cos(1/2*d*x+1/2*c))*2^(1/2)*cos(1/2*d*x+1/2*c)^4*a+3*A*a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*cos(1/2
*d*x+1/2*c)^2+5*B*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)*cos(1/2*d*x+1/2*c)^2+2*A*a^(1/2)*2^(1/2)*(a*s
in(1/2*d*x+1/2*c)^2)^(1/2)-2*B*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2))/a^(7/2)/sin(1/2*d*x+1/2*c)/(cos
(1/2*d*x+1/2*c)^2*a)^(1/2)/d

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [B]  time = 1.72635, size = 579, normalized size = 4.6 \begin{align*} \frac{\sqrt{2}{\left ({\left (3 \, A + 5 \, B\right )} \cos \left (d x + c\right )^{3} + 3 \,{\left (3 \, A + 5 \, B\right )} \cos \left (d x + c\right )^{2} + 3 \,{\left (3 \, A + 5 \, B\right )} \cos \left (d x + c\right ) + 3 \, A + 5 \, B\right )} \sqrt{a} \log \left (-\frac{a \cos \left (d x + c\right )^{2} - 2 \, \sqrt{2} \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{a} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 4 \,{\left ({\left (3 \, A + 5 \, B\right )} \cos \left (d x + c\right ) + 7 \, A + B\right )} \sqrt{a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{64 \,{\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/64*(sqrt(2)*((3*A + 5*B)*cos(d*x + c)^3 + 3*(3*A + 5*B)*cos(d*x + c)^2 + 3*(3*A + 5*B)*cos(d*x + c) + 3*A +
5*B)*sqrt(a)*log(-(a*cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(a)*sin(d*x + c) - 2*a*cos(d*x +
c) - 3*a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) + 4*((3*A + 5*B)*cos(d*x + c) + 7*A + B)*sqrt(a*cos(d*x + c)
+ a)*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.87054, size = 181, normalized size = 1.44 \begin{align*} \frac{\sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}{\left (\frac{2 \, \sqrt{2}{\left (A a^{5} - B a^{5}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2}}{a^{8}} + \frac{\sqrt{2}{\left (5 \, A a^{5} + 3 \, B a^{5}\right )}}{a^{8}}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \frac{\sqrt{2}{\left (3 \, A + 5 \, B\right )} \log \left ({\left | -\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a} \right |}\right )}{a^{\frac{5}{2}}}}{32 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))^(5/2),x, algorithm="giac")

[Out]

1/32*(sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a)*(2*sqrt(2)*(A*a^5 - B*a^5)*tan(1/2*d*x + 1/2*c)^2/a^8 + sqrt(2)*(5*A*
a^5 + 3*B*a^5)/a^8)*tan(1/2*d*x + 1/2*c) - sqrt(2)*(3*A + 5*B)*log(abs(-sqrt(a)*tan(1/2*d*x + 1/2*c) + sqrt(a*
tan(1/2*d*x + 1/2*c)^2 + a)))/a^(5/2))/d